
Character Recognition in Ancient
Greek Papyrus

Master Thesis

Gwenael Gendre

University of Fribourg

June 2021

Abstract

The conservation of historical documents is very important, digitization helps to maintain them.
Due to their possible degradation, handwriting recognition and thus complete transcription become
difficult. One way to tackle this problem is Keyword Spotting, where all instances of a query
keyword are retrieved. Graphs are a possible representation of handwriting and its variations and
can therefore be used for Keyword Spotting.

This work focuses on a collection of ancient greek papyri, without word or character segmentation:
we introduce a new graph representation, Contour graphs, and we successfully adapt a graph-based
Keyword Spotting framework for segmentation-free use. We first test it on a well-studied document,
the George Washington letters, and then on the papyri.

The experiences highlight two difficulties tied to segmentation-free graph matching on papyri:
the complexity and needed time for keyword spotting greatly increase, not allowing us to fully uti-
lize this framework. We also show that papyri are a really challenging document type, however a
well-crafted binarization can almost double the obtained results.

Prof. Rolf Ingold, DIVA Research Group, Department of Informatics, University of Fribourg,
Supervisor

Prof. Andreas Fischer, DIVA Research Group, Department of Informatics, University of Fri-
bourg, Supervisor

Anna Scius-Bertrand, DIVA Research Group, Department of Informatics, University of Fribourg,
Assistant

ii

Acknowledgements

I would like to warmly thank my supervisors, Prof. Rolf Ingold and Prof. Andreas Fischer, and Anna Scius-
Bertrand from the DIVA group, who followed me, helped me and guided me during all of this work. I also
thank Dr. Michael Stauffer, who agreed to share the code to the framework implemented in [1], Prof. Isabelle
Marthot-Santaniello for the ICDAR 2019 papyri along with their binarizations and their transcriptions, and
Dr. Vlad Atanasiu for the manual reconstructions of the papyrus.

Many thanks go to my friends and family who encouraged me and stayed interested in my work, and above
all to my girlfriend, for her help throughout this entire work, for her support during my highs and lows and for
her unending patience for this work who took more of our time together than was necessary.

iv

Contents

Abstract ii

Acknowledgements iv

1 Introduction 2

1.1 Keyword Spotting . 2

1.2 State of the art . 2

1.3 Contributions . 3

2 Datasets 4

2.1 Description . 4

2.1.1 George Washington dataset (GW) . 4

2.1.2 DIBCO Papyri dataset . 4

2.1.3 Reconstructed Papyrus . 6

2.2 Image Preprocessing . 6

2.2.1 George Washington . 6

2.2.2 Papyri binarization . 8

3 Methods 12

3.1 Graph definitions . 12

3.2 Graph representations . 13

3.2.1 Contour graphs . 13

3.2.2 Keypoint graphs . 14

3.3 Graph matchings . 15

3.3.1 Graph Edit Distance (GED) . 16

3.3.2 Hausdorff Edit Distance (HED) . 16

3.4 Segmentation-free Keyword Spotting . 17

vi

4 Experiments 19

4.1 Comparison of graph representations . 19

4.2 Graph representation validation . 21

4.3 Cost function parameters validation . 21

4.4 Results on GW . 22

4.5 Results on Papyri . 26

5 Conclusion 30

A Figures 31

vii

List of Figures

2.1 Greyscale pages of the GW documents . 5

2.1.1 GW: page 270 . 5

2.1.2 GW: page 271 . 5

2.2 DIBCO Papyri examples . 5

2.2.1 Papyrus: P.Corn. Inv. MSS. A 101. XIII . 5

2.2.2 Papyrus: P.CtYBR inv. 69 . 5

2.3 Reconstructions for P.Corn. Inv. MSS. A 101. XIII . 6

2.3.1 Thin reconstruction . 6

2.3.2 Bold reconstruction . 6

2.4 Binarized pages of the GW documents . 7

2.4.1 GW: page 270 . 7

2.4.2 GW: page 271 . 7

2.5 Grayscale patch . 8

2.6 Comparison of different thresholds for binarization . 8

2.6.1 Binarization with threshold 70 . 8

2.6.2 Binarization with threshold 100 . 8

2.6.3 Binarization with threshold 130 . 8

2.7 Difference of Gaussians binarization . 9

2.7.1 Threshold 210, σ1 = 0.5, σ2 = 40 . 9

2.7.2 Threshold 240, σ1 = 0.5, σ2 = 10 . 9

2.8 Median Blur Binarizations . 10

2.8.1 Median Blur of size 9, threshold 100 . 10

2.8.2 Median Blur of size 5, threshold 90 . 10

2.9 Binarization for P.Corn. Inv. MSS. A 101. XIII . 11

3.1 Binarized word of GW . 14

viii

3.2 Contour graphs on Orders, without and with Douglas-Peucker 14

3.2.1 Contour graph, D = 6 . 14

3.2.2 Contour graph, D = 1, ε = 2 . 14

3.3 Keypoint graph on Orders . 15

4.1 Generation time for bigger graphs . 20

4.2 Parsing time evolution for dummy graphs . 21

4.3 Recall-precision curves (MAP) on GW, all keywords . 23

4.3.1 Local threshold: Alexandria . 23

4.3.2 Local threshold: de . 23

4.3.3 Local threshold: escort . 23

4.3.4 Local threshold: etc. 23

4.3.5 Local threshold: Instructions. 24

4.3.6 Local threshold: Letters . 24

4.3.7 Local threshold: made . 24

4.3.8 Local threshold: Orders . 24

4.3.9 Local threshold: remain . 24

4.3.10 Local threshold: Virginia . 24

4.4 Best matches for Alexandria on a selected GW page . 25

4.5 Best matches for Orders on a selected GW page . 26

4.6 Recall-precision curves (MAP) on Papyrus, character ε . 27

4.7 Best matches on original papyrus . 28

4.8 Best matches on reconstructed papyrus . 28

4.9 Best matches on bold reconstructed papyrus . 29

A.1 Comparison of both substraction methods for the Difference of Gaussians 31

A.2 Comparison of the different parameters for the Difference of Gaussians 32

A.2.1 DoG: σ1 = 0.1, σ2 = 10 . 32

A.2.2 DoG: σ1 = 0.5, σ2 = 10 . 32

A.2.3 DoG: σ1 = 1, σ2 = 10 . 32

A.2.4 DoG: σ1 = 0.1, σ2 = 40 . 32

A.2.5 DoG: σ1 = 0.5, σ2 = 40 . 32

A.2.6 DoG: σ1 = 1, σ2 = 40 . 32

ix

A.3 Comparison of different thresholds for binarization . 33

A.3.1 Median Blur of size 5, Binarization with Threshold 70 . 33

A.3.2 Median Blur of size 5, Binarization with Threshold 100 . 33

A.4 Median Blur of size 5, binarization with threshold 80 . 34

A.5 Comparison of different binarization results . 35

A.5.1 Median Blur of size 7, Adaptive Gaussian Thresholding . 35

A.5.2 Binarization with threshold 250, σ1 = 0.5, σ2 = 10 . 35

A.6 Comparison of different binarization results . 36

A.6.1 Median Blur of size 5, Adaptive Mean Thresholding . 36

A.6.2 Binarization with threshold 250, σ1 = 0.5, σ2 = 10 . 36

A.7 Binarized word of GW . 36

A.8 Contour graphs on Orders, without Douglas-Peucker . 37

A.8.1 Contour graph, D = 2 . 37

A.8.2 Contour graph, D = 6 . 37

A.8.3 Contour graph, D = 12 . 37

A.9 Contour graphs on Orders, with Douglas-Peucker . 38

A.9.1 Contour graph, D = 1, ε = 0.5 . 38

A.9.2 Contour graph, D = 1, ε = 2 . 38

A.9.3 Contour graph, D = 1, ε = 4 . 38

A.10 Small binarized character of papyri . 38

A.11 Contour graphs on a small ε, without Douglas-Peucker . 38

A.11.1 Contour graph, D = 2 . 38

A.11.2 Contour graph, D = 6 . 38

A.11.3 Contour graph, D = 12 . 38

A.12 Contour graphs on a small ε, with Douglas-Peucker . 39

A.12.1 Contour graph, D = 1, ε = 0.5 . 39

A.12.2 Contour graph, D = 1, ε = 2 . 39

A.12.3 Contour graph, D = 1, ε = 4 . 39

A.13 Binarized character of papyri . 39

A.14 Contour graphs on a N , without Douglas-Peucker . 40

A.14.1 Contour graph, D = 2 . 40

A.14.2 Contour graph, D = 6 . 40

x

A.14.3 Contour graph, D = 12 . 40

A.15 Contour graphs on a N , with Douglas-Peucker . 41

A.15.1 Contour graph, D = 1, ε = 0.5 . 41

A.15.2 Contour graph, D = 1, ε = 2 . 41

A.15.3 Contour graph, D = 1, ε = 4 . 41

A.16 Keypoint graphs on Orders . 42

A.16.1 Keypoint graph, D = 2 . 42

A.16.2 Keypoint graph, D = 6 . 42

A.16.3 Keypoint graph, D = 12 . 42

A.17 Keypoint graphs on a small ε . 42

A.17.1 Keypoint graph, D = 2 . 42

A.17.2 Keypoint graph, D = 6 . 42

A.17.3 Keypoint graph, D = 12 . 42

A.18 Keypoint graphs on a N . 43

A.18.1 Keypoint graph, D = 2 . 43

A.18.2 Keypoint graph, D = 6 . 43

A.18.3 Keypoint graph, D = 12 . 43

xi

List of Tables

3.1 Cost function parameters . 17

3.2 Confusion matrix . 18

4.1 Comparison of word graphs generation on GW . 20

4.2 Evaluation of graph representations on GW . 20

4.3 Optimal cost function parameters . 22

4.4 GW: Keyword occurrences in cropped pages test set . 22

4.5 MAP for each query word on GW . 22

4.6 Distances of the 10 best matches for Alexandria on a GW page 25

4.7 Distances of the 10 best matches for Orders on a GW page . 26

4.8 MAP for the papyrus versions . 27

4.9 Distances of the 10 best matches on original papyrus . 27

4.10 Distances of the 10 best matches on reconstructed papyrus . 29

4.11 Distances of the 10 best matches on bold reconstructed papyrus 29

xii

Chapter 1

Introduction

1.1 Keyword Spotting

The field of Pattern Recognition in Computer Science is concerned with the automatic recognition of patterns
in data and then the use of those patterns to act on the data, e.g. to classify it [2]. Such computer algorithms
are more powerful and efficient than humans for some tasks, for example Optical Character Recognition, the
extraction of printed or handwritten text. Handwriting Recognition (HWR) is far more challenging than the
recognition of machine printed text, mostly because the style and size of handwriting varies between the authors
or even within the same author’s different texts.

An interesting application of HWR is on historical documents: such documents have a priceless importance,
both for their contents and for the fact that they are irreplaceable. To preserve them and protect them from
degradations caused by the light, the air or the humidity, some of these documents are digitized. Once they
are conserved as such, it is possible to make them available to a larger audience. However, an automatic full
transcription of historical handwritten documents is not feasible, due to the variations in handwriting mentioned
above and to the random noise caused by the nature of the document, such as stains or holes, ink fading, bleeding
through or degrading...

To still be able to access, search and browse digitized handwritten documents, Keyword Spotting (KWS)
has been used: the main idea is not to transcribe the whole document, but rather to find all instances of a
query keyword and highlight them all for the user; KWS is more flexible and can tolerate errors. Many different
methods for KWS exist, we will present the actual state of the art in the next Section of this work.

1.2 State of the art

We focus now on a brief overview of some KWS systems, using the classification followed by Stauffer et al. in
[1]. They split a typical KWS process in three main steps:

(1) Preprocessing: the image documents are preprocessed to improve their quality by removing variations
and noise on the image for better results. Two common steps when preprocessing are binarizing the
documents, i.e. transforming the document into a binary image with black pixels as foreground and white
as background, and filtering to remove noise.
Documents can then be segmented at the line-level or word-level, either manually with more time and
effort or automatically. Other variations such as inclination of the text lines or the characters, size or
scale of the words can also be corrected – or at least have their effects reduced.

(2) Formal Representation: once the preprocessing is done, the characteristics of the handwritten words, lines
or documents are represented by a formal representation, a specific data structure such as feature vectors,
strings, graphs, etc.

2

(3) Query: the formal representation of the query is compared to the unknown words in the document to
retrieve all the instances of this query.

Three separations are made in the KWS classification in [1] are made as such: first, they identify two sorts
of formal representations, either statistical or structural : statistical representations use feature vectors while
structural representations use graphs (or strings or trees, who can be easily reduced to graphs). The next
separation is for the querying algorithms: they can either be template-based or learning-based. Template-based
algorithms compare the query’s representation pairwise with a set of document images representations whereas
the learning-based approach necessitates a priori training of a classifier model. The final separation is made
between query-by-example (QbE) and query-by-string (QbS): in QbE, the query is a word image itself, while in
QbS the keyword is queried via its text value.

We will now present some of the different parts of the classification with examples of their use.

Statistical representations can have different descriptors, where features can describe characteristics of the
handwriting or general characteristics of the document (such as scale-invariant feature transform (SIFT) [3]), or
be embeddings of the previous descriptors (e.g. bag-of-visual-words (BoVW) [4], Fisher vectors [5] or pyramidal
histogram of characters(PHOC)[5]). Template-based approaches for statistical representations often use the
sliding window approach with e.g. dynamic time warping (DTW) [6]; most of them only use QbE. The other
approaches, learning-based approaches, can use Hidden Markov Models (HMMs) [6], neural networks and,
more recently, convolutional neural networks (CNN) such as PHOCNet [7], R-PHOC [8] or CharNet [9]. Both
template-based and learning-based approaches seem to prefer segmentation-based methods.

Structural representations are surprisingly rarer than their counterpart statistical representations, given
how flexible graphs can be and how they seem to naturally suit handwriting representation. The possible
reason for this is the complexity linked to graphs and their handling. Template-based approaches can use
graph representations and a graph-matching algorithm, or the inkball model [10] which is another interesting
possibility.

The handwritten historical documents have some additional limitations, such as their size and the cost of
obtaining labeled training samples, which make CNNs harder to use on them; and considering the relatively
low exploration of graph matchings, Stauffer et al. decided to study this particular direction. Given their good
results, we chose to expand their work for segmentation-free: their graph-based approach segments datasets to
match word images. However, not all datasets can be processed as such: the dataset that primarly interested
us has no word separation in its text.

1.3 Contributions

In this thesis, we introduce two new contributions. The first novelty is a new graph representation, Contour
graphs, that keeps the stroke width information. This representation is obtained by setting nodes with regular
intervals on the characters’ contour; Subsection 3.2.1 has the full explanation and the algorithm for creating
Contour graphs.

The second contribution, the main scope of this work, is the adaptation of the framework created by Stauffer
et al. in [1] for segmentation-free Keyword Spotting. The matching system was changed in order to extract
small graphs from the document via windows sliding on a grid and then match these smaller graphs. This
process is in explained in detail in Section 3.4.

This work will be organized as follows: first, the datasets used in this work will be presented in Chapter 2
with their preprocessing; the Chapter 3 addresses the whole graph subject: definitions, the graph representations
used, graph matchings and edit distances, as well as the global functioning of this framework. Chapter 4 covers
the experiments we made, the setups, the respective results and discussions about them. Finally, Chapter 5
concludes this work with a summary and possible future works on this topic.

3

Chapter 2

Datasets

This chapter will present the two datasets used in this work: the George Washington manuscript (GW)1 and
the DIBCO 2019 Papyri Dataset2 and how they have been preprocessed.

2.1 Description

2.1.1 George Washington dataset (GW)

The George Washington (GW) dataset is a well-known and studied dataset. It consists of twenty pages of
letters handwritten by George Washington and one of his associates in 1755. The writing is rather consistent,
the document does not show major signs of degradation. The most notable variations are seen with respect to
the words’ scaling. The two first pages are displayed in Figure 2.1

We will focus mainly on the complete pages, but the word images and line images are also available. The
pages have a complete transcription, but the groundtruth only indicates the lines’ position. This means that
there is no precise word-level groundtruth for the pages.

2.1.2 DIBCO Papyri dataset

The DIBCO Papyri dataset was used for the Competition on Document Image Binarization (DIBCO 2019) as
part of ICDAR 2019 [11]. It contains ten original images of papyri containing fragments of Homer’s Iliad and
their corresponding binarized version, built manually by members of the D-Scribes project3. Their original Iliad
corpus contains around 1500 fragments, dating from the 3rd century BC to the 7th century AD. The papyri
were chosen to reflect the diversity of literary papyri, therefore coming from various places and periods. In
addition, they have different states of preservation and restoration. The images are provided by the institutions
that own the papyri and are thus also heterogeneous. This dataset has visibly much more noise and degradation
than GW, the characters’ borders and strokes are less precise; these will be obstacles that the KWS will have
to overcome. Two of the papyri can be found in Figure 2.2.

The groundtruth for this dataset had to be obtained manually: we received diplomatic transcriptions for
the ten documents from Dr. Marthot-Santaniello, we then had to determine the character’s bounding box and
add it to the groundtruth file. This slow process meant that we limited ourselves to greek characters that could
easily be recognized.

1George Washington Papers, Series 2, Letterbooks 1754 to 1799: Letterbook 1, pp. 270-279 & 300-309. Retrieved from the
Library of Congress, www.loc.gov/item/mgw2.001/

2Papyri Dataset at ICDAR 2019 DIBCO, https://vc.ee.duth.gr/dibco2019/benchmark/
3D-Scribes, Ancient History, University of Basel, https://d-scribes.philhist.unibas.ch/en/home/

4

www.loc.gov/item/mgw2.001/
https://vc.ee.duth.gr/dibco2019/benchmark/
https://d-scribes.philhist.unibas.ch/en/home/

2.1.1: GW: page 270 2.1.2: GW: page 271

Figure 2.1: Greyscale pages of the GW documents

2.2.1: Papyrus: P.Corn. Inv. MSS. A 101. XIII 2.2.2: Papyrus: P.CtYBR inv. 69

Figure 2.2: DIBCO Papyri examples

5

2.1.3 Reconstructed Papyrus

After the first steps with the Papyri dataset, on which KWS confirmed itself not to be easy, we received
reconstruction of the P.Corn. Inv. MSS. A 101. XIII papyrus that had been manually crafted by Vlad
Atanasiu and show the contour of the characters with a width of one and two pixels, as shown in Figure 2.3.

2.3.1: Thin reconstruction 2.3.2: Bold reconstruction

Figure 2.3: Reconstructions for P.Corn. Inv. MSS. A 101. XIII

This document will serve as a comparison with the non-reconstructed papyrus, to see how much the noise
can affect the results.

2.2 Image Preprocessing

The preprocessing steps of a document are important to ease the graph extraction from a document as much
as possible. Unwanted variations can come from the degradation of the document (fading or smearing of the
ink, stains or holes on the writing support) or from the image quality (bad scanning conditions) for example.

2.2.1 George Washington

The preprocessing for GW is fully explained in [1], we will quickly explain the important steps here. First, a
Difference of Gaussian (DoG) filter is applied: the resulting image is obtained by substracting the convolution of
the original image with a Gaussian of standard deviation σ2 from convolution of the same image with another
Gaussian of standard deviation σ1 (with σ2 > σ1). A Gaussian filter blurs the image, so the Difference of
Gaussian simply substracts a blurred image from a less-blurred image. This aims to get rid of the noise in the
document and focuses on the document’s important features. The document is then binarized: the intensity
of every pixel in the grayscale image is compared to a global threshold; darker pixels (i.e. pixels with lower
intensity) become black and part of the foreground, brighter pixels become white and part of the background.
The first two pages binarized are shown in Figure 2.4.

For our implementation of Segmentation-free KWS, the preprocessing on GW stopped here. However, we
also tested our graph representations on word images, these had been obtained by segmenting the documents
into line images and then word images and by finally correcting the skew, i.e. the inclination of the document.

6

2.4.1: GW: page 270 2.4.2: GW: page 271

Figure 2.4: Binarized pages of the GW documents

7

2.2.2 Papyri binarization

The Papyri dataset contains both the original and the binarized documents, which served as groundtruth for
the DIBCO 2019. We decided to try to obtain our own binarizations and compare them with the groundtruth
binarizations. We will now present the different steps we tried.

Our first step was to convert the images from color to grayscale, and, to speed up the calculations, to work
only on small patches, here of size 500 by 500 pixels. Figure 2.5 shows such a patch.

Figure 2.5: Grayscale patch

Directly binarizing the documents with a global threshold was not sufficient: due to the structure of papyrus,
some parts will be darker than the ink and will thus stay in the binarized image, see Figure 2.6. In these figures,
binarizations with three different thresholds are shown. We observe that trying to remove the marks by lowering
the threshold will take an important part of the characters’ ink away but not remove said marks.

The next step has then been to use filters to get rid of the noise caused by the papyrus itself and focus
on the image’s important features. The first filter is the Difference of Gaussians (DoG): the resulting image is
obtained by substracting the convolution of the original image with a Gaussian of standard deviation σ2 from
convolution of the same image with another Gaussian of standard deviation σ1 (with σ2 > σ1). A Gaussian
filter blurs the image, so the Difference of Gaussian simply substracts a blurred image from a less-blurred image.

We used Python with OpenCV4 to edit all the pictures. At first,we implemented the Difference of Gaussians
with the usual NumPy operations, but it did not produce the expected results because the Numpy and OpenCV
libraries do not treat the addition of images the same way: OpenCV has a saturated operation where NumPy
uses a modulo operation, letting values "jump" between 0 and 255. This is not what we needed: subtracting
pixels with almost equal values could lead to very high as well as very low values next to each other. We see in
Figure A.1 the difference between the two methods: the saturated substraction effectively keeps the important
features of the image5, where the modulo substraction creates patterns of black and white spots on apparently

4https://opencv.org/
5Source of the picture: https://upload.wikimedia.org/wikipedia/commons/d/da/Flowers_before_difference_of_gaussians.jpg

2.6.1: Binarization with
threshold 70

2.6.2: Binarization with
threshold 100

2.6.3: Binarization with
threshold 130

Figure 2.6: Comparison of different thresholds for binarization

8

2.7.1: Threshold 210, σ1 = 0.5, σ2 = 40 2.7.2: Threshold 240, σ1 = 0.5, σ2 = 10

Figure 2.7: Difference of Gaussians binarization

plain surfaces. Therefore, OpenCV’s method is the one we used to implement a correct Difference of Gaussians.

Our DoG implementation uses two parameters, the standard deviation for each Gaussian kernel. All combi-
nations of (σ1, σ2) ∈ {0.1, 0.5, 1} × {10, 40} are tested on the ten patches. Higher σ values gave out too blurry
images to be exploitable. Figure A.2 shows an example comparison between all pairs of parameter on a single
patch.

The standard deviation σ1 does not appear to influence the resulting DoG as much as σ2 does. We decided
to simplify and keep 0.5 as the only σ1 value. It is less clear whether there is a "best" value for σ2. The
characters seem to be more discernible with σ2 = 40, but black markings appeared around the edges and the
eventual holes of the papyrus, as seen on Figures A.2.4 to A.2.6. Interestingly, these marks did not appear on
two of the ten documents.

The initial patch selection was aimed at having as much text as possible on the patches, but this caused
some patches to not have holes or edges of the papyrus on them. In order not to miss any interesting result or
artifact due to mispositioned patches, we decided to work on the complete documents again, at the cost of a
small time increase.

At this step, we realized that the Difference of Gaussians did not eliminate the small documents’ impurities
as well as we hoped, but instead detected them as important features. This was confirmed by the binarization
tests: for each document, two Difference of Gaussians images (σ1 = 0.5, σ2 ∈ {10, 40}) were binarized with
different thresholds. This time, good results were only obtained with very high thresholds. In comparison to
the direct binarization where the best thresholds ranged between 50 and 150, here no good image was produced
with thresholds under 200. We then chose visually the best DoG binarization for each document and made the
following observations: the marks caused by the papyrus itself stayed on all images, but with different intensities;
as seen in the direct binarizations, a lower threshold made the characters disappear as fast as these marks; and
finally that the Difference of Gaussians was apparently not a suitable filter for the style of documents we were
working on.

Below are shown two interesting examples: in Figure 2.7.1, we can observe the recurring problem of the
markings and the characters having the same intensity: to eliminate the first, the latter also has to disappear.
In Figure 2.7.2, another quality of papyrus means that such marks are less numerous, but the edges of the
document have a thick black border.

We chose the median blur filter as the next filter to test because we supposed that blurring would help
taking away the small markings and that the characters were big enough to stay well defined. The median blur
filter uses a square kernel and assigns to each pixel the median value of the square, the parameter controls here
the size of the kernel. We used three small kernel sizes, 5, 7 and 9, on all documents, bigger kernels blurred the
images too much.

9

2.8.1: Median Blur of size 9, threshold 100 2.8.2: Median Blur of size 5, threshold 90

Figure 2.8: Median Blur Binarizations

There was no global best size on all documents, the size and the thickness of the characters and the document
seemed to influence the results: a too small kernel on big characters would not eliminate well enough all the
undesirable marks and a kernel too big relatively to the characters would blur them too much. Even then, only a
few documents had a clear optimal kernel size. Therefore, all documents were blurred with all three kernel sizes
and then binarized with different thresholds. This time, the thresholds were lower again: all best binarizations
occurred between 70 and 100. We directly observed good results for almost all documents! Some images may
even have been good enough to be used directly and were almost as good as the binarized groundtruth received
with the documents. The Figure 2.8.1 shows such an example, it was obtained with a simple median blur kernel
and a threshold binarization, it is clearly better than its DoG counterpart in Figure 2.7.1.

We can also compare Figure 2.7.2 with Figure 2.8.2: the characters are a bit rounded, but the overall quality
stays very good.

However, not all documents produced such good results. For example, Figure A.3 shows us that there is
not always a perfectly good threshold: in Figure A.3.1, the lower left part is not visible enough, but a higher
threshold would be too high on the top right part, see Figure A.3.2.

A more extreme version is seen in Figure A.4. This is caused by the intensity difference in the original
document: a simple binary threshold cannot be sufficient in this case.

One possible solution for this intensity difference would be to use an adaptive threshold. OpenCV has two
available methods, Mean Adaptive Thresholding and Gaussian Adaptive Thresholding. Both methods compute
the threshold value for each pixel (instead of using the same value for the whole image). The Mean method
simply uses the mean of the neighbourhood region values as the threshold and the Gaussian one uses a weighted
sum of the neighbourhood values, with Gaussian weights.

We used both methods on two documents that had problems with binary thresholds (see Figures A.3 and
A.4). The results were not really better: the same black spots seen with the Difference of Gaussians appeared
here again. Different parameters combinations were tried, the best results with adaptive thresholding are found
in Figures A.5.1 and A.6.1. These images can be compared with the best DoG results in the Figures A.5.2 and
A.6.2.

Finally, the last step was to compose the median blur and the Difference of Gaussians, to see if the median
blur could be further improved. The resulting images looked very much alike, whether the median blur filter
was used first or second, we saw no noticeable difference on any document.

The images obtained with this composition of filters were of globally better quality than those produced
only with the Difference of Gaussians, but not better than the median blur images. Some of them were of equal
quality, some of them were clearly worse.

10

After our experiments, using the median blur filter on images and then binarizing them seems to be the best
solution restricted to the use of direct filters. More complex methods produce better results, the rest of this
work will use the groundtruth binarizations manually obtained for the DIBCO with no further preprocessing.
Figure 2.9 shows one binarization, to be compared to the reconstruction in Figures 2.3.1 and 2.3.2

Figure 2.9: Binarization for P.Corn. Inv. MSS. A 101. XIII

11

Chapter 3

Methods

As said in Chapter 1, graphs are an interesting way to represent handwritten documents for Keyword Spotting.
This chapter will address the basic definitions of graphs in Section 3.1, Section 3.2 will focus on the two graph
representations used in this work and Section 3.3 will be on the subject of graph matchings.

3.1 Graph definitions

Definition 3.1. Graph A graph g is a four-tuple g = (V,E, µ, ν) where

• V is the finite set of vertices

• E is the finite set of edges

• µ : V → LV is the vertex labelling function

• ν : E → LE is the edge labelling function.

Two further separations can be made for graphs, based on the direction of their edges or on their labelling
functions. Directed edges between vertices create directed graphs, undirected edges create undirected graphs.
The other categorization is between unlabelled and labelled graphs. Unlabelled graphs have no labels, that is,
the label alphabets are empty (LV = LE = Ø). Labels on vertices and edges can take many forms: litterals,
symbols or vectors.

Definition 3.2. Subgraph: A graph g1 = (V1, E1, µ1, ν1) is a subgraph of g2 = (V2, E2, µ2, ν2), written g1 ⊆ g2,
if

(1) V1 ⊆ V2

(2) E1 ⊆ E2

(3) µ1(v) = µ2(v) ∀v ∈ V1

(4) ν1(e) = ν2(e) ∀e ∈ E1.

An induced subgraph is a subgraph created by removing some vertices and only removing edges adjacent to said
vertices. The condition (2) above is thus replaced by

(2′) E1 = E2 ∩ V1 × V1.

12

3.2 Graph representations

The preprocessed and binarized documents have to be transformed into graphs in order to be analyzed. These
graphs should be able to hold the important characteristics of an image while still reducing the amount of
information to treat. This work will focus on Contour Graphs, a representation that, to my knowledge, has not
yet been used in Graph-Based Keyword Spotting.

3.2.1 Contour graphs

The idea behind this representation, that will be denoted Contour from now on, is to keep the stroke width
when creating a graph. The four representations proposed in [1] do not use this feature, which may convey
important metadata about the character and help recognize the writer.

The graphs are extracted from binarized documents as follows: first, obtain the coordinates of the contours.
This was done with the corresponding function of the OpenCV library 1. Equidistant points of distance D
are selected from each contour component as the vertices, edges are added between consecutive vertices. This
simple procedure is explained in Algorithm 1.

Algorithm 1 Contour graphs extraction
Input: Binarized image B, Distance threshold D, Approximation value ε
Output: Graph g = (V,E) with vertices V and edges E
1: function Contour(B,D, ε)
2: for Each contour component C ∈ B do
3: VC = {(x, y) ∈ C | (x, y) are points in equidistant intervals D}
4: EC = {(u, v) ∈ V ∩ C | (u, v) are consecutive vertices in V ∩ C}
5: if ε 6= 0 then
6: (VC , EC)←Douglas-Peucker((VC , EC), ε)
7: return

Varying D allows to change the size of the graph, but too distant nodes may cause the final graph to be
too far from the original character. To keep a reasonable size without loosing too much information, we used
the Douglas-Peucker algorithm to simplify the contours. Algorithm 2 shows the pseudo-code. The Douglas-
Peucker algorithm recursively simplifies a polyline as follows: select the first and last nodes as boundaries and
find the node the furthest away from the line segment between the boundaries. If the node is further than
the approximation value ε, then call the algorithm recursively on the two parts of the polyline: from the first
boundary to the distant node and from the distant node to the second boundary. If all nodes are close enough,
erase them all and only keep the two boundary points.The OpenCV ’s implementation of this algorithm was
used.

Algorithm 2 Douglas-Peucker Algorithm

Input: Polyline L = (P1, ..., Pn) , Approximation value ε
Output: Polyline L′ ⊆ L
1: function Douglas-Peucker(L, ε)
2: Find point Pi furthest from line segment P1Pn
3: if Distance between Pi and P1Pn > ε then
4: L1 ← Douglas-Peucker((P1, ..., Pi), ε)
5: L2 ← Douglas-Peucker((Pi, ..., Pn), ε)
6: L′ ← L1 + L2

7: else
8: L′ ← P1Pn
9: return L′

Figure 3.1 shows one word of GW, Figure 3.2 shows two examples of Contour graphs with and without the
Douglas-Peucker algorithm, the Figures A.8 and A.9 have more parameters. Two papyri characters of different
sizes (see Figures A.10 and A.13) and their Contour graphs are compared in Figures A.11, A.12, A.14 and A.15.

1Open Source Computer Vision Library, https://opencv.org/

13

https://opencv.org/

Figure 3.1: Binarized word of GW

3.2.1: Contour graph, D = 6

3.2.2: Contour graph, D = 1, ε = 2

Figure 3.2: Contour graphs on Orders, without and with Douglas-Peucker

3.2.2 Keypoint graphs

The keypoint graph representation was introduced in [12], we follow the extended and refined version explained
in [1], where it was the best performing representation on the George Washington dataset using the Hausdorff
Edit Distance algorithm. From now on, this representation will be referred to as Keypoint.

The pseudocode is found in Algorithm 3 and comes directly from [1], however, we used our own implemen-
tation of the code to generate the Keypoint graphs.

First, the binarized document is skeletonised, in our code with the function from the sciki-image library2,
the skeleton is then separated into connected components. The keypoints, i.e. the end points and the junction
points, are extracted from each connected component. End points are detected as pixels with exactly one or
no neighbouring pixels, junction points are pixels with more than two neighbouring pixels. These criteria are
not sufficient for circular structures, e.g. the letter "o", an arbitrary pixel is chosen as a junction point in such
cases.

The thinning algorithm, proposed in [13], may have neighbouring keypoints: we make sure to only keep
endpoints with no other endpoints in their 8-neighbourhood, and only keep junction points that have no neigh-
bouring junction points with higher connectivity next to them. To be noted that this is not mentioned in the
pseudocode.

Next, the selected junction points are removed from the connected components, transforming them into
connected subcomponents. For each connected subcomponent, equidistant intermediate points of distance D
are added by starting at an end of the connected subcomponent and counting the steps to all other points. In
the ideal case, connected subcomponents would only form segments, however, due to the skeleton generation
and the fact that not all junction points have been removed in the previous step, circular structures can still

2scikit-image, https://scikit-image.org/

14

https://scikit-image.org/

appear. This problem is solved as before by taking an arbitrary pixel as the starting point.

The final step is to add the edges to the graph. If vertices u, v ∈ V are directly connected by a chain of
pixels in the skeleton S, an undirected edge (u, v) is added to E.

Algorithm 3 Keypoint-based graph extraction
Input: Skeleton image S, Distance threshold D
Output: Graph g = (V,E) with vertices V and edges E
1: function Keypoint(S,D)
2: for Each connected component CC ∈ S do
3: V = V ∪ {(x, y) ∈ CC | (x, y) are end points or junction points}
4: Remove junction points from CC
5: for Each connected subcomponent CCsub ∈ CC do
6: V = V ∪ {(x, y) ∈ CCsub | (x, y) are points in equidistant intervals D}
7: for Each pair of vertices (u, v) ∈ V × V do
8: E = E ∪ (u, v) if the corresponding points are connected in S
9: return g

Figures 3.3 show a Keypoint graph obtained on Orders, Figures A.16, A.17 and A.18 show the Keypoint
graphs obtained on the same binarizations as in 3.2.1, again with three different distance parameters D.

Figure 3.3: Keypoint graph on Orders

3.3 Graph matchings

This section follows closely the argumentation in [1].

Once we have represented our documents as graphs, in order to perform KWS on them, we must be able to
compute how similar the graphs are, here our query graph and the different queried target graphs. This is made
with a graph matching algorithm: it tries to match similar substructures of two graphs together and allowing
us to get the similarity (or dissimilarity) measure of the two graphs. There are two types of graph matchings:
exact graph matchings and inexact graph matchings.

Exact graph matchings have strong conditions: they will only map two graphs together if the mapping
respects the edge structure and the labelling of the graphs. Inexact graph matchings are more flexible and allow
for some error-tolerance: mappings may violate the edge structure, nodes or edges with different labels may be
mapped together, and nodes and edges may be inserted and/or deleted.

Variations will always happen when creating graphs for KWS, it can be from the degradation of the document
itself or from the differences in the handwriting, e.g. the word scale or some interwriter variation. Inexact graph
matchings can handle such cases where graphs are close but no perfect mapping can be found, they will therefore
be the matchings used for the rest of this work.

To measure dissimilarity, inexact graph matchings can assign a cost to the different nodes and edges oper-
ations: mapping (or substitution), insertion and deletion; minimising the sum of costs of all operations leads
to finding the best matching. Such a minimisation has been found to be NP-complete, we must thus use sub-
optimal inexact graph matching paradigms if we want to keep polynomial - and not exponential - time. The
solution is to use the graph edit distance (GED) [14, 15].

15

3.3.1 Graph Edit Distance (GED)

The graph edit distance (GED) is a very flexible graph matching model. GED has been adapted from the string
edit distance, here a graph g1 = (V1, E1, µ1, ν1) can be edited into g2 = (V2, E2, µ2, ν2) with following operations:
substitution, deletion and insertion of both nodes and edges, formally described as:

(1) Node substitution u ∈ V1 and v ∈ V2 denoted by (u→ v) ,

(2) Node deletion u ∈ V1 denoted by (u→ ε) ,

(3) Node insertion v ∈ V2 denoted by (ε→ v) ,

where ε is the empty node; edge edit operations are defined similarly. Every edit operation e is assigned a
meaningful cost c(e). An edit path is a set of operations that transforms g1 into g2. The graph edit distance
(GED) dλmin(g1, g2) between g1 and g2 is defined by

dλmin(g1, g2) = min
λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) ,

where Υ(g1, g2) denotes the set of all edit paths transforming g1 into g2, c is the cost function measuring the
weight c(ei) of the edit operation ei and λmin refers to the minimum cost path found in Υ(g1, g2).

However, GED is computationally complex and finding the exact minimum λmin requires an exponential
time. For this reason, we use suboptimally approximate GED with the Hausdorff edit distance (HED)[16].

3.3.2 Hausdorff Edit Distance (HED)

The Hausdorff edit distance (HED) is a lower bound approximation of GED with quadratic time complexity.
The GED problem is transformed into a set matching problem, in an analog way to the Hausdorff distance for
finite sets: every node of the source graph is compared to every node of the target graph. In order not to be too
sensitive to variations in handwriting and possible outliers, the maximum is replaced by a sum and the modified
Hausdorff distance H ′ between two sets A = {a1, ..., an} and B = {b1, ...bn} is defined by [17]

H ′(A,B) =
∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(a, b) .

For g1 = (V1, E1, µ1, ν1), g2 = (V2, E2, µ2, ν2) two graphs, the HED is given by [16] as

HED(g1, g2) =
∑
u∈V1

min
v∈V2∪{ε}

f(u, v) +
∑
v∈V2

min
u∈V1∪{ε}

f(u, v) ,

where f(u, v) is a cost function for nodes matchings defined as

f(u, v) =

c(u→ ε) +

∑|P |
i=1

c(p→ε)
2 for nodes deletions (u→ ε)

c(ε→ v) +
∑|Q|
i=1

c(ε→q)
2 for nodes insertions (ε→ v)

c(u→v)+
HED(P,Q)

2

2 for node substitutions (u→ v) ,

where P = {p1, ..., p|P |} and Q = {q1, ..., q|Q|} are the sets of edges adjacent to u and v.

The edge edit costs are implicitly given by the node substitutions:

HED(P,Q) =
∑
p∈P

min
q∈Q∪{ε}

g(p, q) +
∑
q∈Q

min
p∈P∪{ε}

g(p, q) ,

where g(p, q) is the cost function for edge matchings:

g(p, q) =

c(p→ ε) for edge deletions (p→ ε)

c(ε→ q) for edge insertions (ε→ q)
c(p→q)

2 for edge substitutions (p→ q) .

16

3.4 Segmentation-free Keyword Spotting

All the individual steps described until now can be merged into a segmentation-free graph-based keyword
spotting framework.

As explained in Section 2.2, we used already preprocessed binarized documents. Graphs are then extracted
from the images using two different algorithms yielding two different representations, Contour and Keypoint
graphs (see Section 3.2). The nodes and edges of the Contour graphs represent the contour of a character, while
Keypoint graphs keep the most significant nodes of a character’s skeleton. At first, the nodes correspond to
the pixel coordinates; to allow a more meaningful comparison, their (x, y) coordinates are then normalized with
following formula:

x̂ =
x− µx
σx

, ŷ =
y − µy
σy

where x, y are the original node position, x̂, ŷ are the updated node position, and (µx, σx) and (µy, σy) respec-
tively denote the mean and standard deviation of all x- and y-coordinates of the considered graph.

The next step is to match the query graphs with the target document graphs. Since there is no segmentation,
the target graphs have to be extracted from the bigger document graphs first. For each query graph, windows
of different sizes are slid over each target document on a grid pattern with regular horizontal and vertical steps,
the document graph is cropped to produce the target graphs; the different windows’ dimensions are proportional
to the query image and should vary accordingly with the relative scales of all documents. A simple selection
of the target graphs is made: a maximum ratio n is chosen, the target graph is rejected if the actual ratio r
between the number of nodes in the query graph and in the target graph is too far from 1, i.e. if

r ≤ 1

n
or r ≥ n .

We will now present the cost model used for our GED and its faster approximation, HED, a flexible model
adapted to handwriting. This model uses four parameters, the first one is α ∈ [0, 1], it represents the relative
importance of the node edit operations and the edge edit operations. More precisely, the cost of a node operation
is multiplied by the weight α and the cost of an edge operation is multiplied by the weight (1− α); a value of
0.5 means an equal balance between costs. The insertion and deletion operations have unique constant costs,
τν ∈ R+ is the cost of node operations and τe ∈ R+ is for edge operations. The cost of substitutions should
depend on the dissimilarity of the labels, here the nodes’ labels are the (x, y)-coordinates, we will thus use
a weighted Euclidean distance for this. The cost of a node substitution (u → v) with µ1(u) = (xu, yu) and
µ2(v) = (xv, yv) is computed as follows:

c(u→ v) =
√
β(σx(xu − xv))2 + (1− β)(σy(yu − yv))2

where σx and σy denote the standard deviation of the node coordinates in the query graph, and β ∈ [0, 1] is the
weighting parameter determining the balance between x− and y−coordinates. Table 3.1 summarizes the four
cost function parameters.

Parameter
α Weighting parameter between node and edge operation costs
β Weighting parameter between x− and y−coordinates
τv Constant cost for node insertion and deletion
τe Constant cost for edge insertion and deletion

Table 3.1: Cost function parameters

Once the distances between the source graphs and all target graphs are known, they are then normalized
over each target page. The differences in the groundtruths mean that the spotting results have to be computed
differently. For GW, we only know the content of a line and the coordinates in the form of a bounding polygon,
we therefore cannot precisely pinpoint words within the line. The bounding polygon is replaced by its bounding
rectangle for an easier computation of intersection of the line and the source word; the word is considered in said
line if the ratio of the area of the intersection over the area of the original source word is over a fixed threshold.
Here we used a value of 0.9, and we checked whether the word appears in the line transcription to determine

17

if the match is correct or not. Proceeding like this does not give precise results, a meaningful comparison to
previous works will be harder to obtain. On the Papyri, since we manually determined rectangular bounding
boxes for some of the characters, we can directly compare them to the target window. Here, we use the ratio of
the Intersection over Union areas, a ratio over 0.75 signified an overlap of the characters.

To evaluate the results of our models, we need to quantify how good they are, i.e. how correct predictions
are. We first count the true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN).
The confusion matrix resumes these four values in Table 3.2:

Prediction

Retrieved Not retrieved

Reality
Relevant TP FN

Not relevant FP FN

Table 3.2: Confusion matrix

Those values are then used to compute recall (R) and precision (P), two frequently used measures. The
recall is the fraction of relevant characters that have been successfully retrieved, and the precision is the fraction
of retrieved characters that are relevant to the query. Formally,

R =
TP

TP + FN
,

P =
TP

TP + FP
.

Two types of thresholds can be used to be compute recall and precision: if we keep the same threshold for
all keywords, it is a global threshold; if the performance is measured over each keyword and then averaged,
we talk about local thresholds. The metric used to evaluate global thresholds is the average precision (AP):
the associated recall and precision values for all threshold values are plotted to form the recall-precision curve,
the AP is simply the area under this curve. Global thresholds are evaluated with the mean average precision
(MAP), the mean of each keyword’s AP . All the values and metrics are computed using the trec_eval3

software.

3https://trec.nist.gov/trec_eval/

18

https://trec.nist.gov/trec_eval/

Chapter 4

Experiments

This chapter will cover the experiments conducted in this work: comparing Contour and Keypoint graphs,
validating their parameters as well as the cost function parameters, and finally discussing the keyword spotting
experiences and their results, both on GW and on the papyri.

4.1 Comparison of graph representations

A first comparison of the two representations was made on the word images of the George Washington dataset.
The baseline graphs are the Keypoint graphs created in [1], the dataset can be found on the Histograph website1.
The graphs have a distance threshold D = 4.

Our Keypoint implementation has distance thresholds D = 2, 3, 4, 5, 6, 8, 10, 12, the Contour graphs without
Douglas-Peucker also have distance thresholds D = 2, 3, 4, 5, 6, 8, 10, 12. To use the Douglas-Peucker algorithm,
we kept all nodes, D = 1, and took approximation values ε = 0.5, 1, 2, 4.

The Table 4.1 shows the generation time and the average node count for the 4893 word images in the GW
dataset for all graph representations.

Two elements can be extracted from these results: first, our Keypoint graphs have fewer nodes than the
baseline, the reason must lie in the implementation, in the connected subcomponents creation or in the equidis-
tant points selection for example. The second element is the duration difference: the Keypoint graphs are 50
to 70 times slower to generate than Contour. The problem most probably lies in the code, we have to search
through the nodes and the edges many times and the code has not been optimized at all.

The time needed to generate bigger graphs can be found in Figure 4.1: the time needed to extract graphs
from seven increasingly bigger patches of the same binarized document with one Keypoint (D = 4) and one
Contour (D = 8) representation. We can see clearly that the Contour algorithm scales poorly with the size of
the graph! The biggest image tested here was only approximately 1000 by 1000 pixels, a fifth of the original
document.

We ran the experience as described in [1]. We used the same validation set : ten keywords, each appearing
at least ten times with a maximum of 900 additional random words for a total of 1000 words. We also kept the
optimal cost function parameters for Keypoint: τv = 4, τe = 1, α = 0.5, β = 0.1. The results are evaluated on
the mean average precision (MAP), Table 4.2 shows the results with the corresponding runtimes. The baseline
MAP , the best Keypoint and best Contour results are shown in bold.

There is no sensible difference in runtime between different representations with the same number of nodes,
but the differences in MAP are more interesting: our implementation of the Keypoint graphs is over 10% worse
than the baseline, which indicates that there may be a problem with the implementation. Both versions of
Contour graphs outperform our Keypoint, the version simplified with Douglas-Peucker even comes within 2%

1Histograph, www.histograph.ch

19

www.histograph.ch

Keypoint Contour

Generation Mean Nodes Generation Mean Nodes

D = 4 (Baseline) 86
D = 2 1049 s 140 36.5 s 297
D = 3 869 s 99 26.7 s 199
D = 4 1278 s 79 21.6 s 150
D = 5 1047 s 67 18.9 s 121
D = 6 1267 s 59 17.8 s 102
D = 8 1384 s 49 15.7 s 77
D = 10 1346 s 43 15.6 s 63
D = 12 1290 s 39 13.6 s 53
D = 1, ε = 0.5 41.4 s 182
D = 1, ε = 1 20.3 s 90
D = 1, ε = 2 19.9 s 58
D = 1, ε = 4 17.6 s 37

Table 4.1: Comparison of word graphs generation on GW

0 2,000 4,000 6,000 8,000

0

500

1,000

Nodes

T
im

e
[s

]

Keypoint (D = 4)
Contour (D = 8)

Figure 4.1: Generation time for bigger graphs

Keypoint Contour

Runtime MAP Runtime MAP

D = 4 (Baseline) 92.5 s 0.798
D = 2 369 s 0.584 2059 s 0.618
D = 3 157 s 0.645 770 s 0.639
D = 4 79.9 s 0.678 493 s 0.661
D = 5 59.7 s 0.690 301 s 0.665
D = 6 50.0 s 0.658 175 s 0.695
D = 8 28.0 s 0.650 73.4 s 0.709
D = 10 22.2 s 0.658 68.0 s 0.720
D = 12 18.9 s 0.620 42.3 s 0.694
D = 1, ε = 0.5 684 s 0.674
D = 1, ε = 1 54.0 s 0.775
D = 1, ε = 2 29.4 s 0.729
D = 1, ε = 4 22.3 s 0.699

Table 4.2: Evaluation of graph representations on GW

20

2,000 4,000 6,000 8,000 10,000

0

2 · 106

4 · 106

6 · 106

Nodes
T
im

e
[m

s]

Dummy graph parsing

Figure 4.2: Parsing time evolution for dummy graphs

of the baseline. Interestingly, the best performing Contour representation (D = 1, ε = 1) also has a number of
nodes close to the baseline.

Due to the slow generation of Keypoint graphs and their overall worse results, and due to time constraints,
we decided to focus only on Contour graphs with Douglas-Peucker for the rest of the experiences.

4.2 Graph representation validation

Once we tested our system on bigger images – and thus bigger graphs – , we quickly realized the graph parsing
also scaled poorly time wise. We do not use the full complexity of the Graph class, its implementation was not
optimized for the size of the graphs we use. To illustrate this, we created dummy graphs, each ranging from
1000 to 10000 nodes and edges; the time taken to parse them can be found in Figure 4.2.

We decided to keep a maximum of 3000 to 4000 nodes in the graphs to ensure reasonable parsing times.
We limited the sizes in the two following ways: first, by visually choosing high Douglas-Peucker approximation
values ε such that the graphs are still dense enough to preserve the characters’ important features; and second,
because the graphs were still too big, by cropping the original documents. We kept the top third of the GW
pages, the papyri have been arbitrarily cropped to reach the node threshold. In [1], Stauffer et al. also limit the
size of graphs to trade some accuracy for a better runtime.

A confirmation that the size of graphs had to be limited appeared later at the graph matching step: too
many variables, values and results and results had to be stored at the same time, overfilling the heap space of
the Java Virtual Machine and creating errors.

We finally kept the same representation on all documents: Contour graphs with Douglas-Peuckler approxi-
mation value ε = 4 for all documents: GW, the original papyri and the two reconstructions.

4.3 Cost function parameters validation

We can now optimise the cost function on the chosen graph representations. 81 parameters combinations
are evaluated on each of the representations. We took three different values for each of the four parameters:
τv, τe ∈ {4, 8, 16}; α, β ∈ {0.3, 0.5, 0.7}. For time reasons, we did not keep 5 values per parameter as in [1], this
reduced the number of different combinations from 54 = 625 to 34 = 81. On GW, we matched the word the on
a cropped training page; on the three papyrus documents, we matched a character ε on the patches.

The best parameter combinations for each combination are shown in Table 4.3.

21

Parameters

Contour (D = 1, ε = 4) τv τe α β

Original Papyrus 8 4 0.7 0.3
Reconstructed Papyrus 16 4 0.7 0.3
Reconstructed Bold Papyrus 16 4 0.7 0.3
George Washington 16 4 0.7 0.3

Table 4.3: Optimal cost function parameters

Word Occurrences Characters

de 1 2
etc. 5 4
made 2 4
Letters 5 6
Orders 5 6
remain 2 6
escort 2 6
Virginia 2 9
Alexandria 2 10
Instructions. 3 13

Table 4.4: GW: Keyword occurrences in cropped pages test set

4.4 Results on GW

The GW dataset has a four-fold cross-validation split. We only used the first fold as the split for our experience:
the test set includes five pages. As explained in section 4.2, the pages all have been cropped to their top third.
We updated the list of the fold’s query words to only keep the keywords appearing in the cropped pages, sorted
them by apparition number and kept ten words of different lengths. The keywords with their character count
and occurrences are listed in Table 4.4. Each word has to to matched separately, since matching all of them
together would overflow the memory of the machine. This means that the target document graphs had to be
parsed again for each word, adding to the time needed for the experience.

The MAP resulting from each word query on GW can be found in Table 4.5 with their mean highlighted
in bold, the corresponding recall-precision curves are shown in Figure 4.3. The results did not look promising:
only one word crossed the bar of an MAP of 20 points and three are over 10%; the recall-precision curves also
reflect this fact: the worst have very low precision even for zero or small recall, possibly indicating a bad model.

The Figures 4.4 and 4.5 show the best matches found for two words (Orders has the best MAP while

Word MAP

Alexandria 0.0174
de 0.0127
escort 0.0127
etc. 0.0386
Instructions. 0.0816
Letters 0.1745
made 0.1096
Orders 0.2202
remain 0.0407
Virginia 0.0426

Mean 0.0771

Table 4.5: MAP for each query word on GW

22

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - Alexandria

4.3.1: Local threshold: Alexandria

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - de

4.3.2: Local threshold: de

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - escort

4.3.3: Local threshold: escort

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - etc.

4.3.4: Local threshold: etc.

Figure 4.3: Recall-precision curves (MAP) on GW, all keywords

23

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - Instructions.

4.3.5: Local threshold: Instructions.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - Letters

4.3.6: Local threshold: Letters

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - made

4.3.7: Local threshold: made

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - Orders

4.3.8: Local threshold: Orders

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - remain

4.3.9: Local threshold: remain

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Keypoint - Virginia

4.3.10: Local threshold: Virginia

Figure 4.3: Recall-precision curves (MAP) on GW, all keywords

24

Alexandria almost has the worst result) each on a page with an occurrence of the word, labelled in decreasing
distance order. Bounding boxes overlapping better matches have not been selected, only the ten best distinct
ones appear on the figures. Tables 4.6 and 4.7 show the distances of the matches to the source word, with the
correct matches outlined in bold.

The interesting points that can be taken from Figure 4.4 are as follows: the one occurence appearing on
the page has been recognized by the model, however with a one-letter shift. The other attempted matches are
mostly on other long words with high reaching letters that the program tries to match with the A, l or d. The
matches produced with Orders on Figure 4.5 show some success: the word’s occurence is correctly matched,
the other matches are well aligned with the text lines.

Figure 4.4: Best matches for Alexandria on a selected GW page

Match no. Distance
1 278.84
2 294.98
3 298.72
4 301.40
5 307.24
6 307.67
7 309.83
8 311.18
9 313.60
10 323.20

Table 4.6: Distances of the 10 best matches for Alexandria on a GW page

We can now reflect on these results: from the low MAP and the recall-precision curves, we see that the
adaptation of the base framework from [1] to segmentation-free KWS does not produce such good results.

There are different possible reasons for this, some of them come from the increase in complexity - and thus
of the time needed to run the queries. To ensure a reasonable project run time and not overflow the Java
Virtual Machine’s memory, we had to restrict several options. As mentioned in Subsection 4.1, our Keypoint
implementation was not performing good enough to allow us to use it for document graph generation, we
therefore only kept one graph representation. Similarly, the graph parsing time had to be limited, we set
a maximum amount of nodes in the document graphs and enforced it by cropping the documents and taking
unoptimal Douglas-Peucker approximation values. The cost function parameters combinations were also reduced
by a factor of almost eighty. The size of the windows could also be changed: one could test a range of window
sizes, e.g. from half to twice the dimension of the query keyword to account for the differences in the writing.
An even better possibility would also be slightly vary the window’s proportions. In this work, we only parsed

25

Figure 4.5: Best matches for Orders on a selected GW page

Match no. Distance
1 161.72
2 186.16
3 187.33
4 191.80
5 192.95
6 193.35
7 194.44
8 195.07
9 196.66
10 196.82

Table 4.7: Distances of the 10 best matches for Orders on a GW page

the document with the original window size.

We also only used the first fold of the cross-validation split and small amount of query keywords. The
groundtruth as well was not ideal for this task as mentioned in Section 3.4, it would have been better to have
the word positions on the whole page.

All these stacked steps may have too much hindered the model’s capacities for the complexity of Segmentation-
free Keyword Spotting. This reduction is especially visible on GW, a document on which good results were
obtained with segmented models.

4.5 Results on Papyri

As for the GW pages, only patches were kept for the papyri. We decided to keep a unique papyrus, choosing
the document with the best looking characters: it is the document called P.Corn. Inv. MSS. A 101. XIII.
The others documents were too difficult to analyze, the manual recognition and labelling of the characters
were already hard to achieve. We compared the original binarization and the two manual reconstructions by
searching for an ε character. The papyrus needed three runs, one for each of the versions.

The Table 4.8 shows the MAP for the three documents. The first result that can be seen is the apparent
hierarchy between the versions: the bold reconstruction performs better than the thin reconstruction by 8
points, which in turn outperforms the original document by another 11 points. This behavior also appears on

26

Document MAP

Original Papyrus 0.2205
Reconstructed Papyrus 0.3331
Reconstructed Bold Papyrus 0.4181

Table 4.8: MAP for the papyrus versions

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Recall

P
re
ci
si
on

Original
Reconstructed
Reconstructed Bold

Figure 4.6: Recall-precision curves (MAP) on Papyrus, character ε

the recall-precision curves shown in Figure 4.6: the curves are superimposed only on the extreme recall values
and are clearly ordered on the other values.

The clear improvement between the reconstructions and the original document was expected with the noise
removal and the already clean contours of the characters. The double contours of the bold reconstruction may
explain its surprising better performance.

The Figures 4.7 to 4.9 illustrate the ten best distinct matches on each document. The matched ε is displayed
in grey in its bounding box over the red colorized document. The Tables 4.9, 4.10 and 4.11 show the distances
of these matches to the source character, the bold lines indicate the correct matches. On the Original Papyrus
(Figure 4.7), only two of the overall six ε appear in the top ten. Only one character was missed in Figure 4.8
while all six were successfully matched in Figure 4.9, underlining again the better results of the reconstructions.
The wrong matches are an interesting consideration: on the reconstructions, they often happen on crescent
shaped characters such as ς, o or φ; whereas this is not the case on the original document: the wrong matches
appear to be between characters or on all kinds of shapes. This further indicates how hard the use of the original
document’s graphs seems to be.

Match no. Distance
1 30.30
2 105.82
3 108.73
4 108.93
5 110.33
6 110.57
7 110.59
8 110.72
9 110.78
10 112.0

Table 4.9: Distances of the 10 best matches on original papyrus

The differences between the three Papyri documents and the improvement on the reconstructions lead to
interesting conclusions: the original papyri are a really hard dataset, but we have some confirmation that on
manually cleaned documents, the model performs relatively good. We can only hope now that the difficulty of
the dataset does not prove itself to be insurmountable.

27

Figure 4.7: Best matches on original papyrus

Figure 4.8: Best matches on reconstructed papyrus

28

Match no. Distance
1 4.20
2 69.21
3 71.29
4 72.68
5 77.09
6 77.23
7 78.89
8 81.03
9 82.36
10 84.49

Table 4.10: Distances of the 10 best matches on reconstructed papyrus

Figure 4.9: Best matches on bold reconstructed papyrus

Match no. Distance
1 7.20
2 60.64
3 62.63
4 66.74
5 68.70
6 70.33
7 75.91
8 77.10
9 78.40
10 85.68

Table 4.11: Distances of the 10 best matches on bold reconstructed papyrus

29

Chapter 5

Conclusion

Digitization is a way to help preserve historical documents. However, due to the variations in handwriting, the
diverse degradations and often smaller sample size of documents, getting a complete transcription generally be-
comes really challenging. Keyword Spotting aims to alleviate this problem by directly retrieving all occurrences
of a query keyword in the document. Stauffer et al. propose a graph-based KWS framework in [1].

In order to use this framework on the DIBCO Papyrus dataset, a set of Iliad papyri, we adapt it for
segmentation-free KWS: smaller graphs are extracted from the document and are then matched with the query
keyword. We also introduce Contour graphs, a new graph representation that takes the stroke into account.

A first test is run on the George Washington dataset, it shows that the step to segmentation-free induces a
huge increase in complexity, forcing us to limit the options and scope of our experiments. The results obtained
are objectively worse than those from [1], possibly because of the limitations introduced: e.g. a maximum graph
size, a reduced parameter range and reduced training samples.

We then test the framework on the papyri and can extract the following: performing KWS on such documents
is intrinsically more difficult, because of the quality of the papyrus itself: holes or darker spots – in opposition
to light paper – complicate the correct outlining of the characters and thus produce worse graphs. However, on
hand-reconstructed binarizations, we see a clear result improvement, a promising result for this segmentation-
free framework.

What are the possible next steps for this framework? As mentioned above, a certain number of choices
have been made to reduce the runtime of our program; more time or better infrastructure would allow to test a
wider range of cost function parameters, generate graphs with a higher number of nodes, match more keywords
and characters on uncropped versions of all documents for example. The size as well as the proportions of the
windows used for the graph extraction could also vary in accounting for the possible variation in handwriting.
The Graph class could be reimplemented, it currently has more features than we need and is not really optimised.

Finally, more graph representations could be tested. Keypoint graphs were the best performing representa-
tion in [1] but our implementation seems to be faulty and takes too much time generating the graphs, it was
therefore left out of our experiments.

30

Appendix A

Figures

Figure A.1: Comparison of both substraction methods for the DoG: two blurred images (top) and their sub-
straction using OpenCV’s saturated method (bottom left) and NumPy’s modulo method (bottom right) 1

1Source of the picture: https://upload.wikimedia.org/wikipedia/commons/d/da/Flowers_before_difference_of_gaussians.jpg

31

A.2.1: DoG: σ1 = 0.1, σ2 =
10

A.2.2: DoG: σ1 = 0.5, σ2 =
10

A.2.3: DoG: σ1 = 1, σ2 = 10

A.2.4: DoG: σ1 = 0.1, σ2 =
40

A.2.5: DoG: σ1 = 0.5, σ2 =
40

A.2.6: DoG: σ1 = 1, σ2 = 40

Figure A.2: Comparison of the different parameters for the Difference of Gaussians

32

A.3.1: Median Blur of size 5, Binarization with
Threshold 70

A.3.2: Median Blur of size 5, Binarization with
Threshold 100

Figure A.3: Comparison of different thresholds for binarization

33

Figure A.4: Median Blur of size 5, binarization with threshold 80

34

A.5.1: Median Blur of size 7, Adap-
tive Gaussian Thresholding

A.5.2: Binarization with threshold
250, σ1 = 0.5, σ2 = 10

Figure A.5: Comparison of different binarization results

35

A.6.1: Median Blur of size 5, Adaptive Mean
Thresholding

A.6.2: Binarization with threshold 250, σ1 =
0.5, σ2 = 10

Figure A.6: Comparison of different binarization results

Figure A.7: Binarized word of GW

36

A.8.1: Contour graph, D = 2

A.8.2: Contour graph, D = 6

A.8.3: Contour graph, D = 12

Figure A.8: Contour graphs on Orders, without Douglas-Peucker

37

A.9.1: Contour graph, D = 1, ε = 0.5

A.9.2: Contour graph, D = 1, ε = 2

A.9.3: Contour graph, D = 1, ε = 4

Figure A.9: Contour graphs on Orders, with Douglas-Peucker

Figure A.10: Small binarized character of papyri

A.11.1: Contour graph,
D = 2

A.11.2: Contour graph,
D = 6

A.11.3: Contour graph,
D = 12

Figure A.11: Contour graphs on a small ε, without Douglas-Peucker

38

A.12.1: Contour graph,
D = 1, ε = 0.5

A.12.2: Contour graph,
D = 1, ε = 2

A.12.3: Contour graph,
D = 1, ε = 4

Figure A.12: Contour graphs on a small ε, with Douglas-Peucker

Figure A.13: Binarized character of papyri

39

A.14.1: Contour graph, D = 2 A.14.2: Contour graph, D = 6

A.14.3: Contour graph, D = 12

Figure A.14: Contour graphs on a N , without Douglas-Peucker

40

A.15.1: Contour graph, D = 1, ε = 0.5 A.15.2: Contour graph, D = 1, ε = 2

A.15.3: Contour graph, D = 1, ε = 4

Figure A.15: Contour graphs on a N , with Douglas-Peucker

41

A.16.1: Keypoint graph, D = 2

A.16.2: Keypoint graph, D = 6

A.16.3: Keypoint graph, D = 12

Figure A.16: Keypoint graphs on Orders

A.17.1: Keypoint
graph, D = 2

A.17.2: Keypoint
graph, D = 6

A.17.3: Keypoint
graph, D = 12

Figure A.17: Keypoint graphs on a small ε

42

A.18.1: Keypoint graph, D = 2 A.18.2: Keypoint graph, D = 6

A.18.3: Keypoint graph, D = 12

Figure A.18: Keypoint graphs on a N

43

Bibliography

[1] M. Stauffer, A. Fischer, and K. Riesen, Graph-Based Keyword Spotting. World Scientific, 2019.

[2] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin,
Heidelberg: Springer-Verlag, 2006.

[3] D. Lowe, “Object Recognition From Local Scale-Invariant Features,” in Proc. Int. Conf. on Computer
Vision (ICCV), vol. 2, pp. 1150–1157 vol.2, 1999.

[4] D. Aldavert, M. Rusiñol, R. Toledo, and J. Lladós, “A Study of Bag-of-Visual-Words Representations for
Handwritten Keyword Spotting,” vol. 18, pp. 223–234, 2015.

[5] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word Spotting and Recognition with Embedded
Attributes,” in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2014.

[6] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free Handwritten Word Spotting Using Character
HMMs,” Pattern Recognition Letters (PRL), vol. 33, pp. 934–942, 2012.

[7] S. Sudholt and G. A. Fink, “PHOCNet : A Deep Convolutional Neural Network for Word Spotting in
Handwritten Documents,” in Proc. Int. Conf. on Frontiers in Handwriting Recognition (ICFHR), 2016.

[8] S. Ghosh and E. Valveny, “R-PHOC: Segmentation-Free Word Spotting using CNN,” 2017.

[9] L. Xing, Z. Tian, W. Huang, and M. R. Scott, “Convolutional Character Networks,” in Proc. Int. Conf. on
Computer Vision (ICCV), 2019.

[10] N. R. Howe, “Inkball Models for Character Localization and Out-of-Vocabulary Word Spotting,” in Proc.
Int. Conf. on Document Analysis and Recognition (ICDAR), pp. 381–385, IEEE Computer Society, 2015.

[11] I. Pratikakis, K. Zagoris, X. Karagiannis, L. Tsochatzidis, T. Mondal, and I. Marthot-Santaniello, “ICDAR
2019 Competition on Document Image Binarization (DIBCO 2019),” in Int. Conf. on Document Analysis
and Recognition (ICDAR), pp. 1547–1556, 2019.

[12] A. Fischer, K. Riesen, and H. Bunke, “Graph Similarity Features for HMM-Based Handwriting Recognition
in Historical Documents,” in Proc. Int. Conf. on Frontiers in Handwriting Recognition (ICFHR), pp. 253–
258, 2010.

[13] T. Y. Zhang and C. Y. Suen, “A Fast Parallel Algorithm for Thinning Digital Patterns,” Communications
of the ACM, vol. 27, pp. 236–239, Mar. 1984.

[14] H. Bunke and G. Allermann, “Inexact Graph Matching for Structural Pattern Recognition,” Pattern Recog-
nition Letters (PRL), vol. 1, no. 4, pp. 245–253, 1983.

[15] A. Sanfeliu and K.-S. Fu, “A Distance Measure Between Attributed Relational Graphs for Pattern Recog-
nition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 3, pp. 353–362, 1983.

[16] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, “Approximation of Graph Edit Distance
Based on Hausdorff Matching,” Pattern Recognition, vol. 48, no. 2, pp. 331 – 343, 2015.

[17] D. P. Huttenlocher, W. J. Rucklidge, and G. A. Klanderman, “Comparing Images Using the Hausdorff
Distance Under Translation,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 654–656, 1992.

44

	Abstract
	Acknowledgements
	Introduction
	Keyword Spotting
	State of the art
	Contributions

	Datasets
	Description
	George Washington dataset (GW)
	DIBCO Papyri dataset
	Reconstructed Papyrus

	Image Preprocessing
	George Washington
	Papyri binarization

	Methods
	Graph definitions
	Graph representations
	Contour graphs
	Keypoint graphs

	Graph matchings
	Graph Edit Distance (GED)
	Hausdorff Edit Distance (HED)

	Segmentation-free Keyword Spotting

	Experiments
	Comparison of graph representations
	Graph representation validation
	Cost function parameters validation
	Results on GW
	Results on Papyri

	Conclusion
	Figures

